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THE BEGINNING OF ALGEBRA: AL-KHWARIZMI

The ‘publication’ of the book of al-Khwarizmi at the beginning of the ninth
century — between 813 and 833! — is an outstanding event in the history of
mathematics. For the first time, one could see the term algebra appearing
in a title? to designate a distinct mathematical discipline, equipped with a
proper technical vocabulary. Muhammad ibn Misa al-Khwarizmi,
mathematician, astronomer and distinguished member of the ‘House of
Wisdom’ of Baghdad, had compiled, he wrote, ‘a book on algebra and al-
mugabala, a concise book recording that which is subtle and important in
calculation’.?® The event was crucial, and was recognized as such by both
ancient and modern historians. Its importance did not escape the mathe-
matical community of the epoch,* nor that of the following centuries. This
book of al-Khwarizmi did not cease being a source of inspiration and the
subject of commentaries by mathematicians, not only in Arabic and
Persian, but also in Latin and in the languages of Western Europe until the
eighteenth century. But the event appeared paradoxical: to the novelty of
the conception, of the vocabulary and of the organization of the book of
al-Khwarizmi was contrasted the simplicity of the mathematical techniques
described, if one compares them with the techniques in the celebrated
mathematical compositions, of Euclid or Diophantus, for example. But this
technical simplicity stems precisely from the new mathematical conception
of al-Khwarizmi. Whilst one of the elements of his project was found
twenty-five centuries before him with the Babylonians, another in the Ele-
ments of Euclid, a third in the Arithmetica of Diophantus, no earlier writer
had recompiled these elements, and in this manner. But which are these ele-
ments, and what is this organization?

The goal of al-Khwarizmi is clear, never conceived of before: to elaborate
a theory of equations solvable through radicals, which can be applied to
whatever arithmetical and geometrical problems, and which can help in cal-
culation, commercial transactions, inheritance, the surveying of land etc.
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In the first part of his book, al-Khwarizmi begins by defining the basic terms
of this theory which, because of the requirement of resolution by radicals
and because of his know-how in this area, was only concerned with equa-
tions of the first two degrees. In fact it is about the unknown, casually
denoted by root or thing, its square, rational positive numbers, the laws of
arithmetic *, X[+, +/, and equality. The principal concepts introduced
next by al-Khwarizmi are the equation of the first degree, the equation of
the second degree, the binomials and the associated trinomials, the normal
form, algorithmic solutions, and the demonstration of the solution for-
mula. The concept of equation appeared in the book of al-Khwarizmi to
designate an infinite class of problems, and not, as with the Babylonians for
example, in the course of the solution of one or other problem. However,
the equations are not presented in the course of the solution of problems
to solve, like the ones of the Babylonians and Diophantus, but from the
-start, from the basic terms whose combirations must give all the possible
forms. Thus, al-Khwarizmi, immediately after having introduced the basic
terms, gives the six following types:

ax? = bx ax’=c bx=c
2 20 e 2 _
ax“+bx=c ax®+c=bx ax“=bx+c

He then introduces the notion of normal form, and needs to reduce each
of the preceding equations to the corresponding normal form. He finds in
particular, for the trinomial equations,

x> +px=gq x*=px+gq x*+qg=px 1)

Al-Khwarizmi next passed to the determination of algorithmic formulae
for the solutions. He treated each case, and obtained formulae equivalent
to the following expressions:
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sNCGAU
el (A I A

and in this last case he clarifies®

2
if <£> = q ‘then the root of the square [mal] is equal to half of
2 . ;
the number of roots, exactly, without surplus or
diminution’
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2
if <§> < g ‘then the problem is impossible’

Al-Khwarizmi also demonstrates different formulae, not algebraically,
but by means of the idea of equality of areas. He was probably inspired by
a very recent knowledge of the Elements of Euclid, translated by his col-
strations is presented by al-Khwarizmi as the ‘cause’ — ‘illa — of the
solution. Also al-Khwarizmi not only required each case to be demon-
strated, but he proposed sometimes two demonstrations for one and the
same type of equation. One such requirement marks well the distance
covered, and not only separates al-Khwarizmi from the Babylonians, but
also, by his systematic working from now on, from Diophantus.

Thus, for example, for the equation x2 + px = q, he takes two segments
AB = AC = x and then takes CD = BE = p/2 (Figure 11.1). If the sum of the
surfaces ABMC, BENM, DCMP is equal to g, the surface of the square
AEOD is equal to (p/2)? + g, whence®

[l

With al-Khwarizmi, the concepts of the new discipline, and notably ‘the
thing’, the unknown, are not designated to be a particular entity but an
object which can be either numerical or geometrical; on the other hand the
algorithms of the solution must be themselves an object of demonstration.
It is there that the principal elements of the contribution of al-Khwarizmi
reside. As he saw it, all problems dealt with from now on in algebra,

D P (0]
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Figure 11.1
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whether they be arithmetic or geometry, must be reduced to an equation
with a single unknown and with positive rational coefficients of second
degree at most. The algebraic operations — transposition and reduction —
are then applied to put the equation in normal form, which makes possible
the idea of a solution as a simple procedure of decision, an algorithm for
each class of problems. The formula of the solution is then justified mathe-
matically, with the help of a proto-geometric demonstration, and
al-Khwarizmi is in a position to write that everything found in algebra ‘must
lead you to one of the six types that I described in my book’.’

Al-Khwarizmi then undertakes a brief study of some properties of the
application of elementary laws of arithmetic to the simplest algebraic
expressions. He studies in this way products of the type

(a £ bx)(c = dx) with a,b,c,d€ Q.

As rudimentary as it appears to be, this study represents no less than the
first attempt at algebraic calculation as such, since the elements of this cal-
culation became the subject of relatively autonomous chapters. These are
then followed by other chapters in which al-Khwarizmi proceeds to the
application of a worked out theory, in order to solve numerical and
geometrical problems, before treating at last the problems of inheritance
with the aid of algebra, in which he comes across some problems of indeter-
minate analysis.

Thus, at first, algebra is presented as a kind of arithmetic, more general
than the ‘logistic’ — because it allows ‘logistic’ problems to be solved more
rigorously thanks to these concepts — "but also more general than metric
geometry. The new discipline is in fact a theory of linear and quadratic
equations with a single unknown solvable by radicals, and of algebraic
calculation on the associated expressions, without yet the concept of a
polynomial.

THE SUCCESSORS OF AL-KHWARIZMI AND THE
DEVELOPMENT OF ALGEBRAIC CALCULATION

In order to grasp better the idea that al-Khwarizmi developed in the new dis-
cipline, as well as its fruitfulness, it is certainly insufficient to compare his
book with ancient mathematical compositions; it is also necessary to exa-
mine the impact that he had on his contemporaries and on his successors.
It is only then that he rises up in his true historical dimension. One of the
features of this book, essential to our minds, is that it immediately aroused
a trend of algebraic research. The biobibliographer of the tenth century,
al-Nadim, has delivered us already a long list of contemporaries and of
successors of al-Khwarizmi who followed his research. Amongst many
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others were Ibn Turk, Sind ibn ‘Alf, al-Saydanani, Thabit ibn Qurra, Aba
Kamil, Sinan ibn al-Fath, al-Hubiibi and Abu al-Wafa’ al-Biizjani.
Although a good number of their writings have disappeared, encugh have
reached us to restore the main lines of this tradition, but it is not possible
for us within the limits of this chapter to take up an analysis of each of the
contributions. We attempt only to extract the principal axes of the develop-
ment of algebra following al-Khwarizmi.

In the time of al-Khwarizmi and immediately afterwards, we witness
essentially the expansion of research already begun by him: the theory of
quadratic equations, algebraic calculation, indeterminate analysis and the
application of algebra to problems of inheritance, partition etc. Research
into the theory of equations was down several avenues. The first was that
already opened up by al-Khwarizmi himself, but this time with an improve-
ment of his proto-geometric demonstrations: it is the path followed by Ibn
Turk® who, without adding anything new, reproduced a tighter discussion
of the proof. More important is the path that Thabit ibn Qurra took a little
later. He comes back to the Elements of Euclid, both to establish the
demonstrations of al-Khwarizmi on more solid geometrical bases and to
explain equations of second degree geometrically. Moreover, Ibn Qurra is
the first to distinguish clearly between the two methods, algebraic and geo-
metrical, and he seeks to show that they both lead to the same result, i.e.
to a geometrical interpretation of algebraic procedures. Ibn Qurra begins
by showing that the equation x*+ px =g can be solved with the help of
proposition I1.6 of the Elements. At the end of his proof, he writes: ‘this
-method corresponds to the method of the algebraists — ashab al-jabr’.° He
continues with x? + g =px and x*= px+ ¢, with the help respectively of
I1.5 and I1.6 of the Elements; he shows for each the correspondence with
the algebraic solutions, and writes: ‘The method for solving this problem
and the one that precedes it by geometry is the way of its solution by
algebra’. ! The mathematicians subsequently confirmed these conclusions.
One of them writes: ‘It was shown that the procedure which led to the deter-
mination of the sides of the unknown squares in each of three trinomial
equations is the procedure given by Euclid at the end of the sixth book of
his work on the Elements, and which is to apply to a given straight line a
parallelogram which exceeds the whole parallelogram or which is deficient
by a square. The side of the square in excess is the side of the unknown
square in the first and second trinomial equations (x*+ g =px,
x% + px = g), and in the third trinomial equation it is the sum of the straight
line on which the parallelogram is applied and the side of the square in
excess’. !

But this geometrical explanation by Ibn Qurra of the equations of al-
Khwarizmi proved to be particularly important, as we shall see, in the
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development of the theory of algebraic equations. Another account, very
different, appeared at nearly the same time, and it also would be funda-
mental for the development of the theory of algebraic equations: the expla-
nation of geometrical problems in algebraic terms. Indeed al-Mahani, a
contemporary of Ibn Qurra, began not just the translation of certain
biquadratic problems in book X of the Elements into algebraic equations,
but also a problem on solids, given in Archimedes’ The Sphere and the
Cylinder, in a cubic equation. '?

Another direction of development of the theory of equations followed at
the time was research on the general form of the equations

ax?"+x"=c ax?" + ¢ = bx" ax*"=bx"+c
as we can establish in the work of Abii Kamil and Sinan ibn al-Fath,
amongst others. .

Furthermore we witness, after al-Khwarizmi, the expansion of algebraic
calculation. This, perhaps, is the principal theme of research, and the one
more communally shared, amongst the algebraists following him. Thus
even the terms of algebra have begun to be extended up to the sixth power
of the unknown, as can be seen in the work of Abti Kamil and Sinan ibn
al-Fath. Furthermore the latter!® defines powers multiplicatively, in con-
trast with Abli Kamil who gives an additive definition. But it is the algebraic
work of Abu Kamil which marks both this period and the history of
algebra. 14 1p addition to the expansion of algebraic calculation, he included
into his book a new area of algebra, indeterminate analysis or rational
Diophantine analysis. Thus, after having taken up the theory of equations
with firmer demonstrations than those of his predecessor, he studies in a
much more thorough and extensive manner the arithmetical operations on
binomials and trinomials, demonstrating the result obtained each time. He
states and justifies the sign rule and establishes calculation rules for frac-
tions before passing to systems of linear equations with several unknowns
and equations with irrational coefficients, such as

2, 1 Vo, NMiox
(x +\/2 x> =4x (2+\/3)—x 10

Abu Kamil integrates into his algebra the auxiliary numerical methods,
of which some would have been contained in a lost book of al-Khwarizmi,
such as

n n n
D ak > & > 2k
k=1 k=1 k=1

Abu Kamil then studied numerous problems which lead to second degree
equations.
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We thus see that the research of al-Khwarizm1’s successors, and especially
Abi Kamil, contributed to the theory of equations and to the extension of
algebraic calculation to the field of rational numbers, and to the set of irra-
tional numbers. The research of Aba Kamil on indeterminate analysis had
considerable repercussions in the development of this field, but it also gave
him a new signification and a new status. Part of algebra, this analysis con-
stitutes from now on a subject area in all treatments intended to cover the
discipline.

THE ARITHMETIZATION OF ALGEBRA: AL-KARAJI
AND HIS SUCCESSORS

We shall understand nothing of the history of algebra if we do not empha-
size the contributions of two research movements which developed during
the period previously considered. The first was directed towards the study
of irrational quantities, whether as a result of a reading of book X of the
Elements or in a way independently. We can recall, amongst many other
mathematicians who took part in this research, the names of al-Mahani,
Sulayman ibn ‘Isma, al-Khazin, al-Ahwazi, Yuhanna ibn Yasuf, al-
Hashimi and so on. It goes without saying that we cannot cover here these
various contributions. We would just like to emphasize that, in the course
of this work, calculation with irrational quantities was actively developed,
and sometimes even parts of book X of the Elements of Euclid started being
read in the light of the algebra of al-Khwarizmi. To take a single example,
we consider that of al-Mahani in the ninth century, who searched for the
square root of five apotomes. Thus, to extract the square root of the first
apotome, * al-Mahani suggested that ‘we proceed by the method of algebra
and al-muqabala’,'® i.e. putting a=x+y and b=4xy, one obtains the
equation x2 + b/4 = ax. One then determines the positive rcot xo, deduces
¥o and obtains

(a—b)"*=~x0 = o

Al-Mahani carries on thus for the next four apotomes, and for the second
apotome (Vb — @) for example, with b= 45 and a = 5, he ends up with the
equation

o3 B 00
16 2
Now these mathematicians not only studied algebraic calculation of irra-

tional quantities, but they were also tc confirm the generality of algebra as
a tool.

The second research movement was instigated by the translation of the
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Arithmetica of Diophantus into Arabic, and notably by the algebraic
reading of this last book. It is about 870 when Qusta ibn Liiga translates
seven books of Diophantus’s Arithmetica under the significant title The Art
of Algebra.'” The translator used the language of al-Khwarizmi to
reproduce the Greek of Diophantus, thus reorienting the contents of the
book towards the new discipline. Now the Arithmetica, even if they were
not a work on algebra in the sense of al-Khwarizmi, nevertheless contained
techniques of algebraic calculation that were powerful for the time: substi-
tution, elimination, changing of variables etc. They were the subject of
commentaries by mathematicians such as Ibn Liiqa, their translator, in the
ninth century, and Abt al-Wafa’ al-Biizjan1 a century later, but these texts
are unfortunately lost. We know, however, that al-Biizjani wanted to prove
the Diophantine solutions in his commentary. This same Abun al-Wafa’, in
a text which is available to us, demonstrates the binomial formula, often
used in the Arithmetica, for n=2.3.18

Be that as it may, the progress of algebraic calculation, whether by its
expansion into other areas or by the mass of technical results obtained, suc-
ceeded in rejuvenating the discipline itself. A century and a half after al-
Khwarizmi, the Baghdad mathematician al-Karaji thought of another
research project: the application of arithmetic to algebra, i.e. to study syste-
matically the application of the laws of arithmetic and of certain of its
algorithms to algebraic expressions and in particular to polynomials. It is
precisely this calculation on the algebraic expressions of the form

n

f)= >, axt mnez,
k=-m
which has become the principal aim of algebra. The theory of algebraic
equations is of course always present, but only occupies a modest place in
the preoccupations of algebraists. One understands from that time on, that
books on algebra undergo modifications not only in their content but aiso
in their organization.

Al-Karaji devoted several writings to this new project, notably al-Fakhri
and al-Badr. These books will be studied, reproduced and commented
on by mathematicians until the seventeenth century, i.e. that the work of
al-Karaj1 occupied the central place in research on arithmetical algebra for
centuries, whilst the book of al-Khwarizmi became a historically important
exposé, commented on only by second rate mathematicians. Without
reproducing here the history of six centuries of algebra, we illustrate the
impact of the work of al-Karaji by turning towards one of his successors
in the twelfth century, al-Samaw’al (d. 1174). The latter includes in his
algebra, al-Bahir, the principal writings of al-Karaji and notably the two
works cited previously. Al-Samaw’al begins by defining in a general way the
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notion of algebraic power!® and, from the definition x° = 1, gives the rule
equivalent to x”x" =x"*", m,n € Z. Next comes the study of arithmetical
operations on monomials and polynomials, notably those on the divisibility
of polynomials, as well as the approximation of fractions by the elements

of the ring of polynomials. We have for example

f(¥) _20x*+30x 10 5 20 10 40 20 80 40

e(x) 6x2+12 3 x 3x2 ¥ 3x* X 3x5 X7
Al-Samaw’al obtains a sort of limited expansion of f(x)/ g(x) which is only
valid for sufficiently large x.

We meet next the extraction of a square root of a polynomial with
rational coefficients. But, in all the calculations on polynomials, al-Karaji
had devoted a writing, lost now but luckily cited by al-Samaw’al, where he
occupied himself with establishing the formula of binomial expansion and
the table of its coefficients:

n
(a+b)"= D, (n) s neN
k=0 \k

It is during the demonstration of this formula that complete finite induc-
tion appears in an archaic form as the procedure of mathematical proof.
Amongst the methods of auxiliary calculation, al-Samaw’al, following al-
Karaji, gives the sum of different arithmetic progressions, with their
demonstration:

n n n 2 n
Sk S K (z k), S ke+1), ...
k=1 k=1 k=1 k=1

Next comes the response to the following question: ‘How can multiplica-
tion, division, addition, subtraction and the extraction of roots be used for
irrational quantities?’2® The answer to this question led al-Karajl and his
successors to reading algebraically, and in a deliberate manner, book X of
the Elements, to extend to infinity the monomials and binomials given in
this book and to propose rules of calculation, amongst which we find
explicitly formulated those of al-Mahani,

1/ nN1/m __ 1/my\1/n Vm __ ny\1/mn
@5y =) and xH M= (x")
with others such as
(xl/m + yl/m)___ {y[(x/y)l/m + l]m}l/m

We also find an important chapter on rational Diophantine analysis, and
another on the solution of systems of linear equations with several
unknowns. Al-Samaw’al gives a system of 210 linear equations with ten
unknowns.
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From the works of al-Karaji, one sees the creation of a field of research
in algebra, a tradition recognizable by content and the organization of each
of the works. These, to reproduce the words of Ibn al-Banna’ in the thir-
teenth and fourteenth centuries, ‘are almost innumerable’.?! Citing here
only a few, we find the masters of al-Samaw’al: al-Shahraziirl, Ibn Abl
Turab, Ibn al-Khashshab; al-Samaw’al himself, Ibn al-Khawwam, al-
Taniikhi, Kamal al-Din al-Farisi, Ibn al-Banna’ and, later, al-Kashi, al-
Yazdi etc.

In the midst of this tradition, the theory of algebraic equations, strictly
speaking, is not central but nevertheless makes some progress. Al-Karaji
himself considered quadratic equations, just like his predecessors. Certain
of his successors, however, attempted to study the solution of cubic and
quartic equations. Thus al-Sulami, in the twelfth century, tackled cubic
equations to find a solution by radicals.** The text of al-Sulami testifies to
the interest of the mathematicians of his time in a solution of cubic equa-
tions by radicals. He himself considers two types as possible:

X taxt+bx=c and X+ bx=ax’*+c¢

However, he imposes the condition a* = 3b, and then gives for each equa-
tion a positive real root:

3 1/3 3\ 1/3

a a a a

X=i{—z=+c|] -—-= and x=|c——= + -

<27 > 3 < 27) 3
We can reconstruct the procedure of al-Sulami as follows: by affine trans-
formation he obtains the equation in its nornral form; but, instead of
finding the discriminant, he leaves aside the coefficient of the first power of
the unknown to change the problem to one of extraction of a cubic root.

Thus, for example, for the first equation, we take the affine transformation
x— y — af3; the equation can be rewritten as

Y +py-q=0
with
2 3 3
p=b—% and q=c+——+(bg—a—>
Putting b = a%/3, we have

3o+ T
¥ =g

whence y, and therefore x.
Such attempts, attributed to the fourteenth-century Italian mathemati-
cian Master Dardi,?® are frequent in the algebraic tradition of al-Karaji.
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Thus, for example, the mathematician Ibn al-Banna®,** even though he
recognizes implicitly the difficulty in solving cubic equations by radicals
with the exception of x> = @ when he writes that, for equations which ‘lead
to other degrees (than the second), one cannot solve them by the method
of algebra with the exception of “cubes equal to a number™’, gives the

equation
x*+2x*=x+30 (*)
which he solves in the following manner: one rewrites the equation
2 +x2=x*+x+30
which can be rewritten as
x*+xP=x>+x+30
Putting y = x + x, one has
»2=y+30

On solving this equation, one has y = 6, and one can then solve x* +x =6
to find x =2, a solution of (%).

It is still too early to know exactly the contribution of mathematicians of
this tradition to the solution of cubic and quartic equations; but this evi-
dence, contrary to what we might think, shows that certain of them
attempted to go much further than al-Karaji.

THE GEOMETRIZATION OF ALGEBRA:
AL-KHAYYAM

The algebraist arithmeticians kept to the solution of equations by radicals,
and wanted to justify the algorithm of the solution. Sometimes even, from
the same mathematician, Abti Kamil for example, we come across two
justifications, one geometric and the other algebraic. For cubic equations,
he was missing not only their solution by radicals, but equally the justifica-
tion of the solution algorithm, because the solution cannot be constructed
with a ruler and a compass. The mathematicians of this tradition were per-
fectly aware of this fact, and one had written well before 1185: ‘Since the
unknown that one wants to determine and know in each of these poly-
nomials is the side of the cube mentioned in each, and the analysis leads to
the application of a known right-angled parallelepiped to a known line, and
which is surplus to the entire parallelepiped by a cube or which is deficient
by a cube; we can only do this synthese using conic sections’.?® Now this
recourse to conic sections, explicitly intended to solve cubic equations,
quickly followed the first algebraic renderings of solid problems. We have
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mentijoned in the ninth-century al-Mahani and the lemma of Archimedes;?®
it was not long before other problems such as the trisection of an angle, the
two means and the regular heptagon in particular were translated into
algebraic terms. However, confronted with the difficulty mentioned above,
and thus with that of solving cubic equations by radicals, mathematicians
such as al-Khazin, Ibn “Irdq, Abi al-Jud ibn al-Layth, al-Shanni etc. ended
up translating this equation into geometrical terms.?’ They then found in
the course of studying this equation a technique already being used in the
examination of solid problems, i.e. the intersection of conical curves. This
is precisely the reason for the geometrization of the theory of algebraic
equations. This time, in contrast with Thabit ibn Qurra, one does not look
for a geometrical translation of algebraic equations to find the geometrical
equivalent of the algebraic solution already obtained, but to determine,
with the help of geometry, the positive roots of the equation that have not
yet been found by other means. The attempts of al-Khazin, al-Qiihi, Ibn al-
Layth, al-Shanni, al-Birini etc. are just partial contributions until the con-
ception of the project by al-Khayyam: the elaboration of a geometrical
theory for equations of degree equal to or less than 3. Al-Khayyam
(1048—1131) intended first to supersede the fragmentary research, i.e. the
research linked in one or another form with cubic equations, in order to
elaborate a theory of equations and to propose at the same time a new style
of mathematical writing. Thus he studied all types of third degree equa-
tions, classed in a formal way according to the distribution of constant
terms, of first degree, of second degree and of third degree, between the two
members of the equation. For each of these types, al-Khayyam found a con-
struction of a positive root by the intersection of two conics. Thus for
example to solve the equation ‘a cube is equal to the sides plus a number’,
i.e.

X=bx+c b,c>0 (%)

al-Khayyam considered only the positive root. To determine it, he
proceeded from the intersection of a semi-parabola

P={(x,y);b"?y=x?

and a branch of an equilateral hyperbola having the same vertex:

H= {(x,y);y2 = <§ +X> X}
He showed that they have a second common point which corresponds to the
positive root. We note that, if one takes the parabola and the hyperbola,

. for certain values of b and ¢, the points of intersection which correspond
to the negative roots, can be obtained (Figure 11.2).
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E(xo, Yo)

Figure 11.2

Thus, for the choice of curves, we note that if we introduce a trivial solu-
tion x =0 then equation (*) becomes

whence we obtain the two preceding curves. From their intersection (xo, yo)

172 o)
b _ X0 Yo

Xo _yo_Xo+C/b
whence

b__ %

x5 xo+c/b
and Xxp is the solution of equation (*).

To work out this new theory, al-Khayyam is forced to conceive and for-
mulate new and better relations between geometry and algebra. We recall
in this regard that the fundamental concept introduced by al-Khayyam is
the unit of measure which, suitably defined with respect to that of dimen-
sion, allowed the application of geometry to algebra. Now this application
led al-Khayyam in two directions, which could seem at first to be para-
doxical: whilst algebra was now identified with the theory of algebraic
equations, this seemed from now on, but still hesitantly, to transcend the
split between algebra and geometry. The theory of equations is more than
ever a place where algebra and geometry meet and, more and more, analyt-
ical arguments and methods. The real evidence of this situation is the
appearance of memoirs dedicated to the theory of equations, such as that
of al-Khayyam. Contrary to algebraist arithmeticians, al-Khayyam moves
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away from his treatise the chapters on polynomials, on polynomial arith-
metic, on the study of algebraic irrationals etc. He also creates a new style
of mathematical writing: he begins with a discussion of the concept of
algebraic magnitude, to define the concept of measure unit; he advances
next the necessary lemmas as well as a formal classification of equations —
according to the number of terms — before then examining, in order of
increasing difficulty, binomial equations of second degree, binomial equa-
tions of third degree, trinomial equations of second degree, trinomial equa-
tions of third degree, and finally equations containing the inverse of the
unknown. In his treatise, al-Khayyam reaches two remarkable resulis that
historians have usually attributed to Descartes: a general solution of all
equations of third degree by the intersection of two conics; and a
geometrical calculation made possible by the choice of a unit length,
keeping faithful, in contrast to Descartes, to the homogeneity rule.

Al-Khayyam, we note, does not stop there but tries to give an approxi-
mate numerical solution for cubic equations. Thus, in a memoir entitled On
the division of a quarter of a circle,”® in which he announces his new project
on the theory of equations, he reaches an approximate numerical solution
by means of trigonometrical tables.

THE TRANSFORMATION OF THE THEORY OF
ALGEBRAIC EQUATIONS: SHARAF AL-DIN AL-TUSI

Until recently, it was thought that the contribution of mathematicians of
this time to the theory of algebraic equations was limited to al-Khayyam
and his work. Nothing of the kind. Not only did the work of al-Khayyam
begin a real tradition but, in addition, it was profoundly transformed barely
a half century after his death.

According to historical evidence the student of al-Khayyam, Sharaf al-
Din al-Mas‘tidi, *® would have written a book which treated the theory of
equations and the solution of cubic equations. But this book, if it was
written, has not reached us at all. Two generations after al-Khayyam, we
encounter one of the most important works of this movement: the treatise
of Sharaf al-Din al-TiisT On the Equations.*® Now this treatise of al-TiisT
(about 1170) makes some very important innovations with respect to that
of al-Khayyam. Unlike the approach of his predecessor, that of al-TiisT is
no longer global and algebraic but local and analytic. This radical change,
particularly important in the history of classical mathematics, necessitates
that we consider it a little longer.

The Treatise of al-TaisT opens with the study of two conical curves, used
in the following. It concerns a parabola and a hyperbola, to which is added
a circle assumed known, to exhaust all the curves to which the author had

362

t
B
|
1
i
i
i
1
£

T



ALGEBRA

recourse. He seems to suppose that his reader is familiar with the equation
of a circle, obtained from the power of a point with respect to it, and uses
this preliminary part to establish the equation of a parabola and the equa-
tion of an equilateral hyperbola, with respect to two systems of axes.

Next follows a classification of equations of degree less than or equal to
3. In contrast with al-Khayyam, he opts for an extrinsic criterion of classifi-
cation rather than intrinsic. Whilst al-Khayyam, as we have noted,
organizes his exposition according to the number of monomials which form
the equation, al-TiisT chooses as the criterion the existence or not of positive
solutions; i.e. the equations are arranged according to whether they allow
‘impossible cases’ or not. One easily understands then that the Treatise is
made up of only two parts, corresponding to the preceding alternatives. In
the first part, al-Tsi deals with the solution of twenty equations; for each
case, he proceeds through a geometrical construction of roots, the determi-
nation of the discriminant for the only quadratic equations, and finally to
the numerical solution with the help of the method known as
Ruffini—Horner. He reserves the application of this method to polynomial
equations, and not just to the extraction of the root of a number.

Already, we can therefore spot the constituent elements of the theory of
equations of the twelfth century, in the tradition of al-Khayyam:
geometrical construction of roots, numerical solution of equations, and
finally recall of the solutions by radicals of the quadratic equation, this time
rediscovered from geometrical construction. In the first part, after having
studied second degree equations and the equation x3 = ¢, al-TiisT examines
eight third degree equations. The first seven all have a single positive root.
They can have negative roots that al-Tas1 did not recognize. To study each
of these equations, he chooses two second degree curves or, more precisely,
two curved segments. He shows, through geometric means, that the arcs
under study have a point of intersection whose abscissa verifies the pro-
posed equation (they can have other points of intersection). The geometrical
properties described by al-Tusl are, aside from some details which he passes
over though they are satisfied by the data he chooses, the characteristic
properties and thus lead to the equations of the curves under consideration.
Thanks to the use of the terms ‘interior’ and ‘exterior’, al-TtisT can employ
the continuity of the curves and their convexity. We can thus translate his
approach to the equation :

x}—bx=c b,c>0
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He considered in fact the two expressions
172 2
g(x)= [x<§+x>] and f(x)=§5

and showed that, if « and B exist such that (f-g)(e) >0 and
(f—8)(B) <0, then there exists y € ]a, B[ such that (f—g)(y) =0.

In the reading of this first part, we see that, as with al-Khayyam, al-Tiis1
studies principally the geometric construction of positive roots of the twenty
equations of degree less than or equal to 3, since those which are left are
transformed by means of affine transformations to one or other of these
types. In an analogous method to that of al-Khayyam, he begins with plane
geometrical constructions if the equation, reduced as much as possible, is
of first or second degree and by constructions using two or three of the
curves mentioned if the equation, reduced as much as possible, is cubic.

Although the first part of the Treatise is closely dependent on the contri-
bution of al-Khayyam, one already perceives some differences, of which the
consequences only appear in the second part. For each equation studied,
al-TusT demonstrates the existence of a point of intersection of two curves,
while al-Khayyam only really undertook this study for the twentieth equa-
tion. Al-TsT has also introduced some ideas which he will have recourse to
frequently in the second part, such as affine transformations and the dis-
tance of a point from a line.

The second part of the Treatise is dedicated to five equations which,
according to the expression of al-Tisi, allow ‘impossible cases’, i.e. cases
where there is no positive solution. They are the equations

Q) x}+c=ax?
() x*+c=bx
3) ¥*+ax>+c=bx
4) x*+bx+c=ax?
5) ¥*+c=ax®+bx

In contrast with al-Khayyam, al-TiisT could not be content with a simple
statement of these ‘impossible cases’. Preoccupied with the proof of the
existence of points of intersection, and consequently with the existence of
roots, he had to characterize such cases and look for their justification.
Now it is precisely the meeting of this technical problem and the questioning
which followed which brought al-Tiisi to break from the tradition of al-
Khayyam and to modify his initial project. But, to comprehend this major
change, it is necessary to analyse the approach of al-TiisT.

Each of the five equations are written in the form f(x) = ¢; fis a poly-
nomial. To characterize the ‘impossible cases’, al-TisI studies in fact the
intersection of the curve y =f(x) with the line y=c. For al-Tiisi, it is a
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segment of the curve, that for which we have simultaneously x > 0 and
y=f(x) >0, a segment that may not exist. We note that, for him, the
problem only makes sense if x > 0 and f(x) > 0, and in each case he poses
the condition so that f(x) is strictly positive. Thus, in equation (1) he poses
the condition 0 < x < g, in equation (2) 0 < x < \/b; in (3) he gives the con-
dition 0 < x < /b, which is, however, not sufficient. Al-Tisi is therefore
constrained to examine the relationship between the existence of solutions
and the position of the constant ¢ with respect to the maximum of the poly-
nomial function. It is on this occasion that he introduces new concepts, new
procedures and a new language; and in addition, he defines a new subject.
He thus begins by formulating the concept of the maximum of an algebraic
expression, which he calls ‘the largest number’ — al-“adad al-a"zam. Let
f(x0) = co be the maximum; this gives the point (xo, o). Al-TsT determines
next the roots of f(x)=0, i.e. the intersection of the curve with the
abscissa; finally he deduces a double inequality for the roots of f(x) =c.
The whole problem from now on is therefore for him to find the value
of x which yields a maximum of f(x). Al-TiisI proceeds then by solving an
equation which turns out to be, though in a different notation, f'(x) =0,
where f is the polynomial, derivative of f. But, before examining this cen-
tral problem of the derivative, we note the change and the introduction of
local analysis. We begin by recalling the results of al-Tisi. For equation (1)
the derivative admits two roots, 0 and 2a/3, which give respectively a
minimum f(0) =0 and a maximum f(24/3) = co. On the other hand, the
equation f(x) = 0 admits a double root \; =0 and a positive root Az =a.
AI-Tiisi therefore concludes: if ¢ < ¢o equation (1) has two positive roots x;
and x; such that \; =0 < x1 < Xo < x2 < \2 = a. Notice that a third, nega-
tive, root x3 exists, which al-TiisT did not consider. For equations (2), 3)
and (5) his reasoning is analogous. In these three cases, the derivative
admits two roots with opposite signs. The positive root xo gives the max-
imum ¢o = f(x0) and the equation f(x) =0 admits three simple roots, of
which one is negative and the others are \; =0 and A2 — whence the conclu-
sion obtained previously. To best illustrate the approach of al-Tisi, we
resume his discussion of equation (1). This equation can be rewritten

c=x"(a—x)=f(x)
Al-TiisT considered three cases.

Ty
27
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N
The problem is impossible, according to al-TusI (it admits a negative root).

443
C=E—

27

Al-TisI determines the double root xo = 2a/3 (but does not recognize the
negative root).

o
27

Al-TusT determines two positive roots, with
2a
0<xi1 < 3 <x<a

He then studies the maximum of f(x); he shows that

f(xo)= sup f(x) with xp = Z?a *)

0<x<a

by first showing that

(@) x1 > xo0 = f(x1) < f(x0)
followed by
(b) x2 < xo = f{x2) < f(xo0)

and from (a) and (b) he gets ().
To find xo =243, al-TisT solves f'(x) =0. He next calculates

24\ 4a°
J(x0) —f<?> =57
which allows him to justify the three cases considered previously. He next
determines the two positive roots x; and x2. He puts x, = xo + y; this affine

transformation leads to the equation
V+ayi=k

with k=co—c= 4a3/ 27 — ¢, an equation already solved by al-TusT in the
first part of the Treatise. He next justifies this affine transformation. He
uses also the affine transformation x; = ¥ + a@ — X2, with y a positive solution
of an equation solved earlier in the Treatise. Al-TisT justifies this last affine
transformation and finally shows that x; # xo and x1 # x».

In equation (4) there suddenly appeared a difficulty, since the maximum
JS(x0) could be negative. Al-TsT then imposes a necessary condition, to
consider only the case where f(x) > 0, and next proceeds as before.
The equation f’(x)=0 has then two roots x§ and xo (X6 < x), which
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correspond respectively to a negative minimum and a positive maximum.
Al-TasT only considers the root xo and obtains co = f(x0). However, the
equation f(x)=0 has, in this case, three roots, 0, A\; > 0, A\; > 0, with
A1 < 2. Al-Tust deduces that, for ¢ < co, equation (4) has two positive
roots x; and xz such that

O<)\1<x1<xo<x2<)\2

This quick summary shows that the presence of the idea of the derivative
is neither fortuitous nor secondary but, rather, intentional. It is true,
however, that this is not the first time. that one encounters the expression
of a derivative in the Treatise: it is already introduced by al-Tiist to con-
struct a numerical method of solution of equations. This method goes as
follows: al-TiisT determines the first decimal digit of the root, as well as its
decimal order. The root is then written as x = So + ¥, with so = g9 X 107 (r
the decimal order). He determines next the second digit with the help of the
equation in y, f(so + y) = 0; this algorithm, called Ruffini—Horner, is used
to determine the different terms of the preceding cubic equation in y. The
algorithm introduced by al-TusI serves to arrange the calculations so as to
minimize the number of necessary multiplications, and is none other than
a slightly modified form of the Ruffini—Horner algorithm adapted for cubic
equations. Al-TisT then introduces as the coefficient of y the value f'(so)
of the derivative of fat so. Al-Tasl obtains the last digit of y, i.e. the second
digit of the required root, by taking the integer part of

—f(s0)/f"(s0)

We recognize here the method known as ‘Newton’s’ for the approximate
solution of equations. After having determined the second digit, which is
the first of y, one applies the same algorithm to the equation in y to find
a third digit, and one continues like this until the root is obtained, which
is an integer in the cases considered by al-Tasl.>’ However, if it were not,
one finds the numbers after the decimal point by continuing as before. The
successors of al-TiisT proceeded in this way for the case where the root is
not an integer, as explained in the text of al-Asfahani, in the nineteenth
century. 32

If the presence of an expression for the derivative is not doubted, it
remains that al-TasT did not explain the route which led him to such a
notion. To understand better the originality of his method, we consider the
example of equation (3) which is written

fx)=x(b-ax—x*)=c

The fundamental problem is to find the value x = xo at which the maximum
is reached. Now it is in explaining the splitting of equation (3) into two
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equations solved beforehand by means of affine transformations
X2 yY=X—Xo and X2 YV=Xo—X
that al-TusT gives
J(x0) = f(xo +y) =2x0(x0 + @)y — (b~ X3)y + Bxo + @)y> + y*
and
F(x0) —f(x0 = y) = (b — x8)y — 2x0(x0 + @)y + BX0 + a)y* — y°

Al-Tust has to compare f(xo) with f(xo+y) and f(xo— )
noting that on 10, \»[ the terms

Y2Bxo+a+y) and Y*@xo+a-y)
are positive. Next, he can deduce two equalities such that

if b—x3 > 2x0(x0 + @) then f(xo0) > f(xo +»)
if 2x0(x0+a) > b—x3 then f(xo) > f(xo— )

and in consequence

J(x0) > f(xo+y)
f(x0) > f(x0—y)

i.e. if xp is the positive root of the equation

b—x5=2x0(x0+a) = {

f'(x)=b—-2ax—-3x*=0

then f(xo0) is the maximum of f(x) in the interval studied. We notice that
the two equalities correspond to the Taylor expansion with

f’(xo)=b—2axo—3x% '2—17_}0’()?0): "(3Xo+a)

l 4 R
if (x0)= -1

This method of al-TisT consists then, it seems, of arranging f(xo + y)and
J(xo — y) according to powers of y, and of showing that there is a maximum
when the coefficient of y is zero in this expansion. The value of x for which
J(x) is maximum is therefore the positive root of the equation represented
by f'(x) =0. The virtue of the affine transformations x = xo * y, with x,
the root of f'(x) =0, is that the term in y in the new equation vanishes.
It is probable that starting from this property that al-TisT discovered the
derivative equation f’(x) =0, perhaps together with consideration of the
graph representing f which he never draws in the Treatise. For small ¥,
the principal part of the variation of f(xo + y) is in ¥ and does not change
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sign with y. I have shown elsewhere that the method of al-Tusi resembles
strongly that of Fermat, in the latter’s investigation of maxima and minima
of polynomials. *?

As we have just seen, the theory of equations is no longer only an area
of algebra but covers a much wider domain. The mathematician gathers
within this theory the geometrical study of equations and their numerical
solution. He poses and solves the problem of the possible conditions for
each equation, which leads him to devise the local study of curves that he
uses, and notably to study systematically the maximum of a third degree
polynomial by means of the derivative equation. In the course of the numer-
ical solution, he does not only apply certain algorithms where one meets
again the idea of the derivative of a polynomial, but he tries hard to justify
these algorithms with the help of the idea of ‘dominant polynomials’. It is
clear that it is a mathematics of a very high level for this epoch; put simply,
here already we touch the limits of a mathematical research carried out
without efficient symbolism. All the research of al-Tusi was done in fact in
natural language, without any symbolism (except, perhaps, for a certain
symbolic use in tables), which made it particularly complicated. One such
difficulty appears as an obstacle, not only to the internal progress of the
research itself, but also to the communication of results. In other words,
as soon as a mathematician handles analytical ideas, such as those men-
tioned above, natural language is found to be inadequate to express the con-
cepts and operations which were applied, constituting a limit to innovation
in, as well as to diffusion of, this mathematical knowledge. The followers
of al-TusT were, in all likelihood, affected by this same obstacle, until
mathematical notation was truly transformed, after Descartes especially.

But the example of al-TiisT suffices to show that the theory of equations
not only was transformed after al-Khayyam but did not cease to demarcate
itself even more clearly from search for solutions by radicals; it thus ended
up by covering a vast field, including sectors which later would belong to
-analytical geometry, or even to analysis.

But what was the destiny of this theory of equations of al-Ttsi? This
question is still at the edges of research, and we cannot at this time provide
a satisfactory answer. We do not know of work in algebra by his student
Kamal al-Din ibn Yiinus. However, the student Athir al-Din al-Abhari (d.
1262) of Kamal al-Din ibn Yiinus composed an algebra which -reached us
abridged, according to the copyist. But, in the part that we do have, he
applies the method of numerical solution of al-Ttsi, and in the same terms,
to the equation x3 = a. Al-Khilafi, 34 another algebraist of this time, recalls
that al-TiisT was ‘the master of his master’ and that he studied cubic equa-
tions, but he himself was faithful to the tradition of al-Karaji. Other evi-
dence of this time mentions al-TiisT,>* but nothing has come down to us
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which indicates that one or the other of the mathematicians had taken up
the theory of al-Ttis1. Whilst in effect we find traces of the book of al-TisT
with his followers, we do not know for the moment of any commentaries
on his algebra. Such could have existed but, even if this were the case, we
doubt that it could surpass the work of al-T1iisT without setting out the oper-
ative notation necessary to develop the analytical ideas already contained
in al-Tust’s Treatise on Equations.

NOTES

1 In the preamble of his book, al-Khwarizmi mentions the generous encourage-
ment of the arts and sciences by the Caliph al-Ma’miin, who had encouraged him
to write his book. Now al-Ma’miin reigned between 813 and 833, which conse-
quently are the limits for the dating of the book. Cf. al-Khwarizmi, Kitab
al-jabr. ’

2 The title of the book is Kitab al-jabr wa al-muqgabala. Recall that the two terms
al-jabr and al-mugabala refer to both a discipline and two operations. Consider
for example

x*+c—bx=d with ¢ > d
Al-jabr consists in transposing the subtractive expressions
x> +c=bx+d
and al-mugabala in reducing to similar terms:
x*+(c—d)=bx

Cf. Al-Khwarizmi, Kitab al-jabr, p. 16. -

4 Thus, Abii Kamil writes about al-Khwarizmi: ‘The one who first achieved a book
of algebra and of al-mugabala; the one which started and invented all the fun-
damentals found there’; Abii Kamil, MS Kara Mustafa, 379, folio 2*. The same
Abi Kamil wrote: ‘I have established, in my second book (al-Wasaya bi-al-jabr)
the proof of authority and priority in algebra and a/-muqgabala of Muhammad
ibn Miisd al-Khwarizmi, and I replied to a hot-head called Ibn Barza, about what
he attributed to “‘Abd al-Hamid, whom he mentioned was his grandfather.” Cf.
Hajji Khalifa, vol. 2, pp. 1407—8. We can multiply the evidence which is abun-
dant in this area. Sinan ibn al-Fath, in the introduction to his pamphlet, only
mentions al-Khwarizmi, confirming that algebra was his creation: ‘Muhammad
ibn Miisa al-Khwarizmi wrote a book which he called algebra and al-mugabala’.

5 Cf. Al-Khwarizmi, Kitab al-jabr, pp. 20-1.

6 Ibid., pp. 21-2.

7 Ibid., p. 27.

8 Cf. Aydin Sayili, pp. 145 ef seq.

9 Thabit ibn Quira: F7 tashih mas@’il al-jabr bi-al-barahin al-handasiyya, MS
Topkapi Saray, Ahmet III, no. 2041, folio 245".

10 Ibid., folio 246".
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1t is an anonymous manuscript (no. 5325 Astan Quds, Meshhed, folio 2477
falsely attributed to Abfi Kamil; copied in 581 H/1185.

See later, note 24.

On powers in Sinan ibn al-Fath, see Rashed (1984: 21 n.11).

Abii Kamil, see note 4.
Let a++/b be first binomial, i.e.
2 23172
0 Ben ussb  dbfm YD ep

Then a — b is a first apotome.

Al-Mahani, Tafsir al-maqala al--ashira min kitab Uqlidis, MS BN Paris 2457,
folios 180'—187" (cf. especially folio 1827).

Cf. Diophantus, Les Arithmétiques.

Abu al-Wafa’ al-Buzjant: F7 jam® adla® al-murabba’at wa al-muka*abat wa
akhdh tafadulaha, MS 5521 Astan Quds, Meshhed.

This is what al-Samaw’al writes, after having noted in a table, on either side of
x°, the powers: ‘If the two powers are on either side of unity, from one of them
we count in the direction of unity the number of elements in the table which
separate the other power from unity, and the number is on the side of unity. If
the two powers are on the same side of unity, we count in the opposite direction
to unity’ (al-Samaw’al, French Introduction, p. 19).

Ibid., p. 37.

Ibn al-Banna’: Kitab fi al-jabr wa al-muqabala MS Dar al-Kutub, Riyada, M.,
folio 1.

Al-Sulami: Al-muqaddima al-kafiya f1 hisab al-jabr wa al-muqabala, Collection
Paul Sbath, no. 5, folios 92°-93".

Cf. van Egmond, (1983).

Ibn al-Bann?’, Kitab fi al-Jabr, folio 26"

Compare the manuscript falsely attributed to Abii Kamil, n.11, folio 25.
Here is how al-Khayyam recounts this history in his own way in his celebrated
treatise on algebra: ‘As for the Ancients, nothing has come down to us of what
they said: perhaps, after having researched and examined them, they had not
grasped them; perhaps their research had not obliged them to examine; perhaps
finally nothing of which they said has been translated into our language. As for
the Moderns, it is al-M&hani [Abi ‘Abdallah Muhammad b. *fsa Ahmad al-
Mahani, he lived between about 825 and 888] who amongst them has led to the

‘algebraic analysis of the lemma that Archimedes used, considering it as

admitted, in proposition 4 of the second book of his work on The Sphere and
the Cylinder; now he has arrived at cubes, squares and numbers forming an
equation that he does not succeed in solving even after much thought; he thus
ended by judging that it was impossible, until Abt Ja‘far al-Khazin appeared
and solved the equation by conic sections.

Following him, some geometricians had need of several types of [these
equations], and certain of them solved some; but none of them said anything
definite about the enumeration of their types, nor about [the means] of
obtaining the forms of each of them, nor about their demonstrations, except for
the two types that I will mention.
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As for me, I have wished, and still ardently do, to know with certitude all these
types, and to distinguish, amongst the forms of each of them, the possible cases
from the impossible cases, through demonstrations; I know in effect that one has
a very urgent need when one is wrestling with the difficulties of the problems.
However, I have not been able to dedicate myself exclusively to the acquisition
of this, nor to think about it with perseverance, distracted as I have been by vicis-
situdes. For we find ourselves tried by the dwindling of the men of science, with
the exception of a group as small as its afflictions are large, and whose worry
is to find time on the wing to dedicate to the achievement and the perfectioning
of the science’. This text is fundamental for the history of cubic equations. See
our edited and translated version, with commentary, of L’Oeuvre Algébrique
d’al-Khayyam, pp. 11-12.

Ibid., pp. 82—4: ‘As for the ancient mathematicians, who did not speak in our
language, they had attracted attention to nothing of all of this, or nothing has
reached us which has been translated into our language.

And among the Moderns, who speak our language, the first who had need of
a trinomial sort of these fourteen kinds is al-Mahani, the geometrician. He
solved the lemma which Archimedes has taken, considering it as admitted, in
proposition 4 of the second book of his work on The Sphere and the Cylinder.
It is this which I am going to explain.

Archimedes said: the two straight lines AB and BC are of known magnitude,
and one is in the prolongation of the other; and the ratio of BC to CE is known.
CE is therefore known, as is shown in the Data [of Euclid]. He then said: let
us set the ratio of CD to CE equal to the ratio of the square of AB to the square
of AD.

He did not say how this was known, since one had necessarily to have conic
sections. And, besides this, he introduced nothing in the book which was
founded on conic sections. He also took this as admitted. The fourth proposition
concerns the division of a sphere by a plane, according to a given ratio. But al-
Mahani used the terms of algebraists in order to facilitate [the construction]; as
the analysis led to numbers, squares and cubes in equations, and as he could not
solve them by conic sections, he thus ended by saying that it is impossible. The
solution of one of these types therefore remained hidden from this eminent man,
in spite of his eminence and his primacy in this art, until Abii Ja'far al-Khazin
appeared and indicated a method which he described in his treatise; and Abii
Nasr b. “Irdq, protégé of the Prince of Believers from the land of Khwarizm,
solved the lemma that Archimedes had assumed to determine the side of a hep-
tagon inscribed in a circle, and which is founded on the square verifying the men-
tioned property: he used algebraic terms. The analysis led to [the equation] “a
cube plus squares equal a number”, which he solved by sections.

This man, by my life, is of an excellent class in mathematics. This is the
problem in the face of which Abl Sahl al-Qiihi, Abti al-Wafa’ al-Buzjani, Aba
Hamid al-Saghani, and a group of their colleagues, who were all devoted to
His Lordship ‘Adud al-Dawla, in the City of Peace [Baghdad], were found to
be powerless; the problem, I say, is as follows: if you divide ten into two parts,
the sum of their squares plus the quotient of the largest over the smallest is
seventy-two. Analysis leads to squares equal to the roots plus a number. These
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eminent men were totally perplexed for a long time when faced with this
problem, until Abt al-Jid solved it. They have conserved [his solution] in the
library of the Samanid kings. There are thus three kinds of compound equations,
two trinomials and a quadrinomial. The only binomial equation, i.e. “the cube
is equal to a number”, our eminent predecessors solved. Nothing from them has
reached us about the ten [equations] which remain, nor anything as detailed. If
time granted us and if success accompanies me, I will record these fourteen types
with all their branches and sections, distinguishing between the possible and
impossible cases — in fact certain of these types require some conditions for them
to be valid — in a treatise which will contain many of the lemmas preceding them,
of great utility for the principles of this art.’

ibid., p. 80.

See Rashed (1974b).

Cf. Sharaf al-Din al-Tusl.

Taking the example of the numerical resolution of the equation

xX*=bx+N
al-Tusi writes:

To determine the required number, we place the number in the table and we count
its rows by cubic root, no cubic root, cubic root. We place the zeros of the cubic
root, we count also [the rows] of the number by root, no root, until we arrive at
the homonymous root of the last place assigned a cubic root. We next place the
number of roots, and we count the rows by root, no root. The homonymous row
of the last place assigned a root for this number of roots is the last row of the root
of the number of roots. The problem has two cases.

First case: The homonymous root in the last place assigned a cubic root is much
greater than [the row] of the last part of the number of roots, as when we say: a
number of the form 327 6 7 0 3 8 plus nine hundred and sixty-three roots equals
a cube. We count from the homonymous root of the last place assigned a cubic root
until the last row of the number of roots, and we count the same number from the
last place assigned a cubic root in this direction; and there where we end up, we
place the last part of the number of roots reduced to one third; we then have this
figure:

32767038
321

Since the homonymous root of the last place assigned a cubic root is the third place
assigned a root, it is in the row of tens of thousands which is higher than the last
row of the number of roots, which is in [the row] of hundreds. We count from the
row of the homonymous root of the last place assigned a cubic root until the
hundreds, and we count through this number also from the row of the last place
assigned a cubic root, finishing in the tens of thousands; we place the last part of
the third of the number of roots in this row and we place next the required cubic
root, which is three, at the place of the last zero. We subtract its cube from what
is beneath it, we multiply it by the rows of a third of the number of roots and we
add three times the product to the number. We put the square of the required
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number parallel to itself under the number, according to this figure:
3
6055938

321
9

We subtract the third of the number of roots from the square of the required

number and we remove the third of the number of roots; there remains then this
figure:

3
6055938
89679

We move the upper line by two rows and the lower line by one row; we place the
second required number, two, and we subtract its cube from the number; we mul-
tiply it by the first required number, we add the product to the lower line, we mul-
tiply it by the lower line and we subtract three times each product of the number;
we add the square of the second required numpmber to the lower line, we multiply it
by the first required number, we add the product to the lower line and we move the
upper line by two rows and the lower line by one row. We place another required
number, which is one; we subtract its cube from the number, we multiply it by the
first required number and the second, we add the result to the lower line, we mul-
tiply it by the lower line and we subtract three times this product from the number.
The upper line is then the figure 3 2 1 which is the required root.

Second case: The last row of the number of roots is greater than the homonymous
root of the last place assigned a cubic root, as when we say: a number of roots equal
to 102021 plus a number of the form 3 2 7 42 0 equal a cube. We count the number
of roots by root, no root, and we add to the number two rows by putting zeros in
front of it; we look for the place assigned the highest root corresponding to the
number of roots; we then place the zeros of the cubic root and then we look for
the highest homonymous cubic root of this place assigned a root. We move the row
of the number of roots parallel to this root, so that it is parallel to the cubic root
which is homonymous. We place the other rows of the number of roots in order;
one has then this figure:

00327420
102021

because the highest place assigned a root which corresponds to them is the third,
and it is in the column of tens of thousands: its homonymous is the third place
assigned a cubic root which is in the [column] of thousands of thousands. We move
the row of tens of thousands of the number of roots so that it is parallel to the place
assigned the third cubic root, and we look for the greatest number such that one
can remove its square of the number of roots; it is three; we place it in the third
place assigned a cubic root; we multiply it by the rows of the number of roots, we
add the product to the number and we remove its cube of the number. We reduce
the number of roots to a third; it will begin then at the row of hundreds according
to this figure:

W W W
R )
S W
(=R
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We place next the square of the required number parallel to it below the number;

one subtracts the third of the number of roots from it and deletes the line which

is the third of the number of roots; we move the upper line by two rows and the
lower line by one row and we apply the procedure until it is finished.

(Sharaf al-Din al-Tusi, vol. I, pp. 49-52; see Table VI, p. cvii

and Table VII, p. cviii)

32 Sharaf al-Din al-Tasi, vol. I, pp. 118 et seq. On the other hand, al-Asfahani
gives in the same treatise an interesting method for finding a positive root of a
cubic equation, based on the property of a fixed point. Did he take it from his
ancient predecessors, as he did for the method of al-Ttisi? He probably did, but
at this time we cannot settle such a question. Here, described quickly, the
method is applied to the same example of al-Asfahani. Solve the equation

x*+210=121x with X€R,
We write this equation in the form
x=(121x-210)"? = f(x)
Al-Asfahani takes then x{ = 11, whence
yi=f(xf)= (112" < 11
He takes an approximate value by default of yi, ﬂamely 10.3; he finds
7(10.3) = (1036.3)"* < 10.3

He takes then x4 = 10.3 and y, = f(x4) = (1036.3)'>. He takes next an approxi-
mate value by default of y,, namely 10.1. He finds that

F£(10.1) = (1012.1)** < 10.1
He takes then xj = 10.1 and so on; the first terms of this series are
xi=11>x3=103>x3=101> ...

Note that al-Asfahani chooses the value 11 in a2 manner that is a little different.
Instead of the function f, he considers a function g such that f< g, i.e.

g(x) = (1217

and looks for a root x; of the new equation x = g(x), which ensures that
x1 =11 > xo if xo is the required root.

33 Sharaf al-Din al-Tusi, vol. I, p. xxvii.

34 Al-Khilati, Niar al-Dalala fi ‘ilm al-jabr wa al-muqgabala, MS of the University
of Teheran no. 4409, folio 2.

35 See Shams al-Din al-Mardini, Nisab al-habr fi hisab al-jabr, Istanbul, MS
Feyzullah no. 1366, folios 13—14.
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